

第三部分 九年级几何模型

一、二次函数的图象和性质

$y = ax^2$ $(a \neq 0)$ 的图象

	$y=ax^2$	(a≠0)	
	<i>a</i> >0	a<0	
图象		y	
开口方向 及大小	开口向上; a 越大,开口越小; a 越小,开口越大。	开口向下; a 越大,开口越小; a 越小,开口越大.	
对称轴	直线 x=0 或 y 轴	直线 x=0 或 y 轴	
顶点坐标	(0,0)	(0,0)	
增減性	对称轴左侧,y随 x 增大而減小; 对称轴右侧,y随 x 增大而增大.	对称轴左侧, y随 x 增大而增大; 对称轴右侧, y随 x 增大而减小.	
最值	有最小值,当 x=0 时,y 有最小值是 0.	有最大值,当 x=0 时,y 有最大值是 0.	

$y = a(x-h)^2 + k \ (a \neq 0)$ 的图象

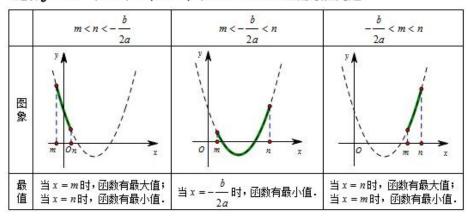
	$y=a(x-h)^2+k\ (a\neq 0)$	
	<i>a</i> >0	a<0
图象	x=h / 0 x	y x=h

开口方向 及大小	开口向上; a 越大,开口越小; a 越小,开口越大.	开口向下; a 越大,开口越小; a 越小,开口越大.
对称轴	直线 x=h	直线 x=h
顶点坐标	(h,k)	(h,k)
增减性	对称轴左侧,y随x增大而减小; 对称轴右侧,y随x增大而增大。	对称轴左侧,y随x增大而增大; 对称轴右侧,y随x增大而减小.
最值	有最小值,当 x=h时,y有最小值是 k	有最大值,当 x=h 时, y 有最大值是 k

图象与 a 、 b 、 c 的符号关系

代数式	作用	字母符号	图象的特征
а	1、 决定开口方向	a>0	开口向上
и	2、 决定开口大小	a<0	开口向下
		c > 0	交点在 x 轴上方
c	决定抛物线与 y 轴交点坐标 (0,c)	c = 0	抛物线经过原点
		c < 0	交点在 x 轴下方
$-\frac{b}{2a}$	决定对称轴的位置,对称轴是直线 $x = -\frac{b}{2a}$	<i>ab</i> > 0	对称轴在火轴左侧
		b = 0	对称轴为y轴
		ab < 0	对称轴在y轴右侧

$y = ax^2 + bx + c$ (a, b, c) 是常数, $a \neq 0$ 的图象


	$y=ax^2+bx+c$ (a \ b	、c是常数, a≠0)	
	a>0	a<0 y 1 0 x	
图象			
开口方向 及大小	开口向上; 	开口向下; a 越大,开口越小; a 越小,开口越大.	
对称轴	直线 x=- b/2a		
顶点坐标	$\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$		
增减性	对称轴左侧,y随x增大而减小; 对称轴右侧,y随x增大而增大.	对称轴左侧,y随x增大而增大; 对称轴右侧,y随x增大而减小。	
最值	有最小值,当 $x=-\frac{b}{2a}$ 时, y 有最小值是 $\frac{4ac-b^2}{4a}$	有最大値,当 x=- b 対,y 有最大值是 4ac-b	

代数式	作用	字母符号	图象的特征
	决定抛物线与x轴的交点个数	$b^2 - 4ac > 0$	与 x 轴有两个交点
b^2-4ac		$b^2 - 4ac = 0$	与 x 轴有唯一交点
		$b^2 - 4ac < 0$	与 x 轴没有交点

二、二次函数的区间最值和图象变换

区间最值

函数 $y = ax^2 + bx + c$ (a > 0) 在 m < x < n 上的最值问题:

二次函数的解析式

描述 设一般式 $y = ax^2 + bx + c$ $(a \neq 0)$

若已知条件或根据已知可推出图象上三个点,可以设成一般式,将已知条件代入解析式,得出关于a、b、c的三元一次方程组,解方程即可.

设顶点式 $y = a(x-h)^2 + k \ (a \neq 0)$

若已知条件或根据已知可推出函数的顶点或对称轴与最值时,可以设成顶点式,将已知条件代入解析式,求出待定系数.

设交点式
$$y = a(x - x_1) \cdot (x - x_2)$$
 (a $\neq 0$)

若已知或者可以推知图象和 x 轴的交点坐标($x_1,0$)和($x_2,0$)时,可以设交点式,将已知条件代入解析式,求出待定系数。

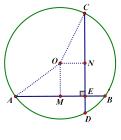
二次函数图象的平移变换: "上加下减括号外、左加右减括号内"。

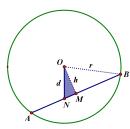
抛物线的对称变换

	关于 x 轴对称	关于 y 轴对称	关于原点对称
$y = ax^2 + bx + c$	$y = -ax^2 - bx - c$	$y = ax^2 - bx + c$	$y = -ax^2 + bx - c$
$y = a(x - h)^2 + k$	$y = -a(x - h)^2 - k$	$y = a(x+h)^2 + k$	$y = -a(x+h)^2 - k$
$y = a(x - x_1)(x - x_2)$	$y = -a(x - x_1)(x - x_2)$	$y = a(x + x_1)(x + x_2)$	$y = -a(x + x_1)(x + x_2)$

二次函数图象的翻折和旋转变换:一般是求出变换后的顶点坐标,再根据原函数图象的 a 值 (二次项系数),写出新的顶点式。开口方向变化了, a 变相反数,开口方向不变,则 a 不变。

三、垂径定理


名称	文字语言	符号语言	图示
垂径定理	垂直于弦的直径平分弦,并 且平分弦所对的两条弧	CD 是直径 $CD \perp AB$ 于点 M $\Rightarrow \begin{cases} AM = BM \\ \widehat{AC} = \widehat{BC} \\ \widehat{AD} = \widehat{BD} \end{cases}$	
垂径定理 的推论	平分弦(不是直径)的直径 垂直于弦,并且平分弦所对 的两条狐	CD是直径 CD交 AB 于点 $M(AB$ 不是直径) AM = BM \Rightarrow	<i>B</i>
拓展	平分弦所对的一条弧的直径 垂直平分弦,并且平分弦所 对的另一条弧	CD是直径 CD交 AB 于点 $M\widehat{AC} = \widehat{BC}AD = \widehat{BD}CD \perp ABAM = BM$	A C B
	弦的垂直平分线经过圆心, 并且平分弦所对的两条弧	$CD \perp AB$ 于点 M $AM = BM$ \Rightarrow $\left\{ \overrightarrow{AD} = \overrightarrow{BD} \right\}$ $\left\{ \overrightarrow{AC} = \overrightarrow{BC} \right\}$ $\left\{ \overrightarrow{CD} \right\}$ $\left\{$	
归纳	对于一个圆和一条直线,如果具备下列五个条件中的任意两个,那么一定具备其他三个:① 过圆心;②垂直于弦;③平分弦(非直径);④平分弦所对的劣弧;⑤平分弦所对的优弧.简 记为"知二推三"。		



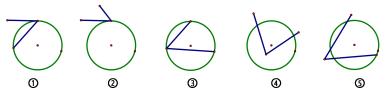
圆心角:顶点在圆心的角叫做圆心角(central angle).

- ① 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;
- ② 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等;
- ③ 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优弧或劣弧也相等. 弧、弦、圆心角之间的关系

名称	文字语言	符号语言	图示
定理	在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等	$\angle AOB = \angle COD \Rightarrow \begin{cases} \overrightarrow{AB} = \overrightarrow{CD} \\ AB = CD \end{cases}$	
毛带什么	在同圆或等圆中,如果 两条弧相等,那么它们 所对的圆心角相等,所 对的弦相等	$\overrightarrow{AB} = \overrightarrow{CD} \Rightarrow \begin{cases} \angle AOB = \angle COD \\ AB = CD \end{cases}$	o C
重要结论	在同圆或等圆中,如果 两条弦相等,那么它们 所对的圆心角相等,所 对的优弧、劣弧相等	$AB = CD \Rightarrow \begin{cases} \angle AOB = \angle COD \\ \overline{AB} = \overline{CD} \\ \overline{ADB} = \overline{CBD} \end{cases}$	A B
注意	不能忽略 "在同圆或等圆中"这个前提条件,如果丢掉了这个前提条件,即使圆心角相等,所对的弧、弦也不一定相等 如右图所示,两个圆的圆心相同, \widehat{AB} 与 $\widehat{A'B'}$ 对应同一个圆心角,但 \widehat{AB} 专 $\widehat{A'B'}$, AB = $A'B'$		
规律总结	在同圆或等圆中,两条弧(一般同为优弧或劣弧)、两条弦、两个圆心角中,只要有一组重相等,那么它们所对应的其余各组里也分别相等		

基本方法:

- 1、垂直弦,作2条"弦心距", 勾股定理求解;
- 2、N 为圆内定点,当 AB 取最 小值时,h=d

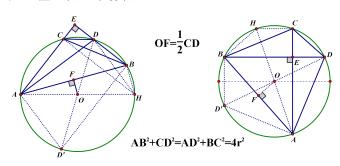

五、圆内接四边形的性质

圆内接多边形:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.

圆内接四边形的性质:圆内接四边形的对角互补. 圆内接四边形的外角等于它的内对角.

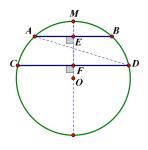
圆周角: 顶点在圆上,并且两边都与圆相交的角叫做圆周角(angle in a circular segment).

圆周角必须具备两个特征:第一,顶点在圆上;第二,两边都与圆相交,如图,只有图 ③ 中的角是圆周角.


圆周角定理

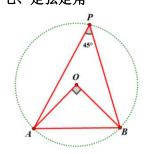
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

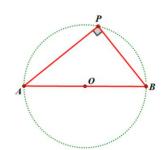
圆周角定理的推论

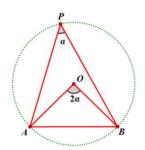

- ① 在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等;
- ② 半圆(或直径)所对的圆周角是直角, 90°的圆周角所对的弦是直径.

六、垂直弦、平行弦

基本方法:

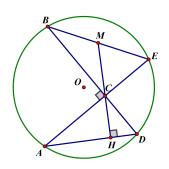

中位线、垂径定理、勾股定理 圆周角定理、平行弦




基本方法:

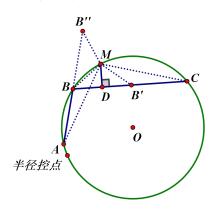
- 1、过 O 作垂径,利用垂径定理证明
- 2、连 AD, 相等的圆周角所对 的弧相等

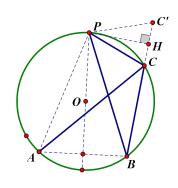
七、定弦定角



基本方法:

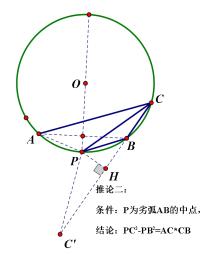
圆周角定理的逆运用,用于解决"隐圆问题","轨迹"、"动点"等。


婆罗摩笈多(圆)

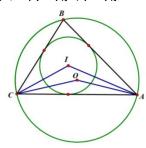

AE 和 BD 是圆 O 的两条互相垂直的弦,垂足为 C,

- ① 若 CH LAD,则直线 CH 平分线段 BE (M 为 BE 中点)
- ② 若直线 CM 平分线段 BE (M 为 BE 中点),则直线 CM LAD

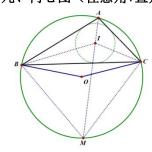
阿基米德折弦定理



AB、BC是圆O的两条弦,M是弧ABC 的中点,MD上BC于D,则AB+BD=CD


推论一: 条件:P为优弧ACB的中点,

结论: PB2-PC2=AC*CB

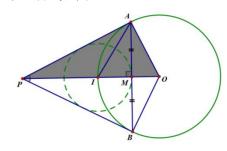

八、内心角+外心角

基本结论:

$$\angle COA=2\angle B$$
; $\angle CIA = 90^{\circ} + \frac{1}{2}\angle B$

九、内心图(任意角+直角)【关联:等腰图、等角互补模型】

基本结论:

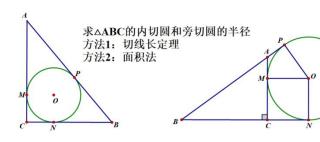

MB=MC=MI

左图: 等腰图基本结论(中位线、双勾);

对角互补 (任意角)

右图:对角互补(双直角)

十、切线长定理

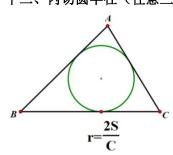


基本结论&方法:

切线长定理;

双等腰(AM=BM)、射影定理、面积法 点 I 为△PAB 的内心

十一、内切圆半径(直角三角形)

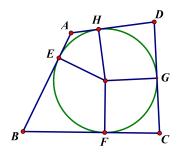


基本结论&方法:

左图(内心)
$$r = \frac{a+b-c}{2}$$
; $r = \frac{ab}{a+b+c}$

右图(旁心)
$$r = \frac{c+b-a}{2}$$
; $r = \frac{ab}{a+c-b}$

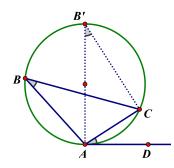
十二、内切圆半径(任意三角形)


例题:已知一个三角形的三边长分别为 5、7、8,

则其内切圆的半径为

答案: √3

十三、圆外切四边形模型

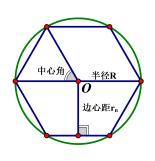


基本结论&方法:

AB+CD=AD+BC

反复运用切线长定理即可

十四、弦切角



基本结论&方法:

弦切角的大小对于它所夹的弧所对的圆周角;

证明辅助线如图, 但不限于此法。

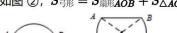
十五、正多边形和圆的计算

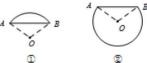
名称	公式	说明
中心角	$\alpha = \frac{360^{\circ}}{n}$	α 为中心角,n 为边数
边心距、边长、半径间的关系式	$R_n^2 = r_n^2 + \frac{1}{4}a_n^2$	R_n 为半径, r_n 为边心距, a_n 为边长
周长公式	$P_n = n \cdot a_n$	P_n 为正多边形周长, a_n 为边长
面积公式	$S_n = \frac{1}{2} P_n r_n$	P_n 为正多边形的周长, r_n 为边心距

十六、弧长和扇形面积

弧长的计算

描述 弧长公式
$$l = \frac{n\pi R}{180}$$
.


扇形面积的计算


扇形面积公式 描述

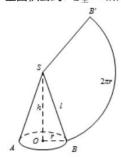
$$S_{eta \mathbb{H}} = rac{n \pi R^2}{360} = rac{1}{2} l R$$
 .

弓形面积的计算

如图 ①,S弓形=S扇形AOB-S $\triangle AOB$; 如图 ②,S弓形=Sۄ形AOB+S $\triangle AOB$.

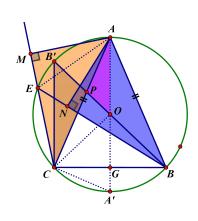
圆锥的计算

描述 圆锥的基本概念


连接圆锥顶点和底面圆周上任意一点的线段叫做**圆锥的母线**,连接圆锥顶点与底面圆心的线段叫做**圆**

圆锥的侧面积和全面积

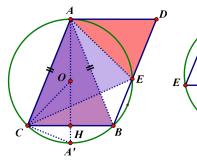
侧面积公式: $S_{\parallel} = \pi l r$.

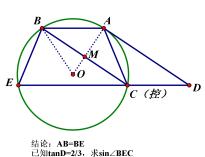

全面积公式: $S_{+} = \pi l r + \pi r^2$ (l 为圆锥的母线, r 为底面圆半径).

展开图扇形圆心角度数=圆锥底面半径。360°圆锥母线

$$n = \frac{r}{1} \cdot 360^{\circ}$$

十七、等腰三角形内接于圆(示例)




条件: △ABC 内接于⊙O, AB=AC

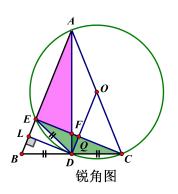
结论:

- 1、垂径.中位线 AO \bot BC; CG=BG; \angle OAC= \angle OAB; OG \parallel B'C、OG = $\frac{1}{2}$ B'C
- 2、角平分.全等 ∠MEA=∠BEA (可以反推等腰 AB=AC); △AMC≌△ANB;
- 3、双勾股 $CG^2 = OC^2 OG^2 = AC^2 AG^2$
- 4、相似 △B'CP∽△OAP(X 形); △B'CP∽△APB(蝶形); △PAO∽△PBA(子母);
- 5、角相等 ∠COG=∠CAB=∠CB'B(常用于三角函数导角)

十八、平行四边形+圆【关联等腰图、贝壳相似、平行弦】

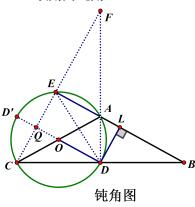
参考答案: 12 13

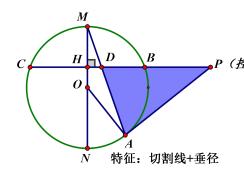
基本结论&方法:

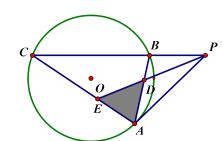

等腰图、平行弦、贝壳相似(双等腰)

垂径定理+对边平行、双勾股;

十九、等腰图——以腰为直径作圆

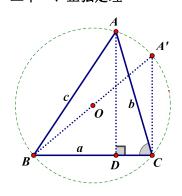

1、顶角为锐角


基本结论&方法:


点 D 为 BC 中点,(三线合一) ED=CD=BD(斜边中线) △DEC 为圆内接等腰(等腰图) 四边形 DQEL 为矩形 与矩形的边相关的中位线若干条 △AEC 和△BEC 双勾股 整体图形可用面积法

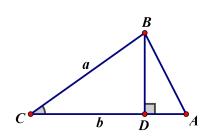
2、顶角为钝角

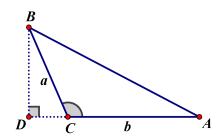
二十、切割等腰图



特征: 切割线+角平分线

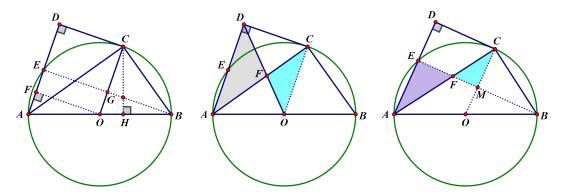
基本结论&方法:

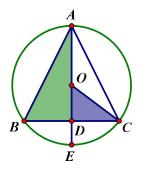

左图: PA=PD 右图: AE=AD


二十一、正弦定理

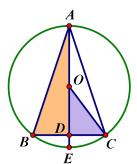
正弦定理:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2r$$

面积公式: $S = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A$

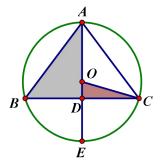

二十二、余弦定理【双勾股】(已知两边夹角求第三边长度)

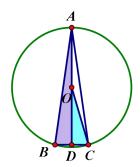


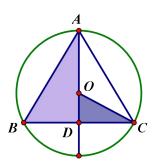
二十三、切割互垂图

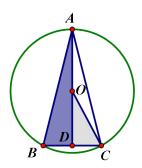


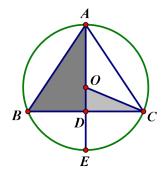
- ② AC平分∠BAD, 弧CE=弧CB, ∠DCA=∠CBA
- ③ OF=CD=EG=BG=CH BH=CG=DE OG=EF=AF=OH
- **4 AD+DE=AB**
- **⑤ AE+AB=2AH=2AD**
- © AE+AB=2AC*cos∠BAC

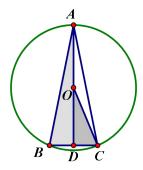

二十四、等腰双勾图


OD:DC=3:4 DC:DA=4:(3+5)=4:8=1:2


OD:DC=4:3 DC:DA=3:(4+5)=3:9=1:3

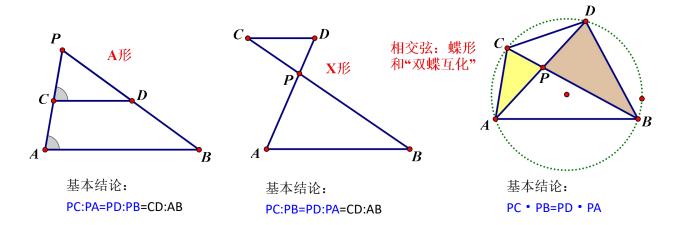

OD:DC=7:24 DC:DA=24:(7+25)=24:32=3:4


OD:DC=24:7 DC:DA=7:(24+25)=7:49=1:7

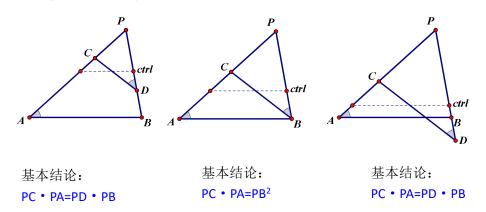

OD:DC=8:15 DC:DA=15:(8+17)=15:25=3:5

OD:DC=15:8 DC:DA=8:(15+17)=8:32=1:4

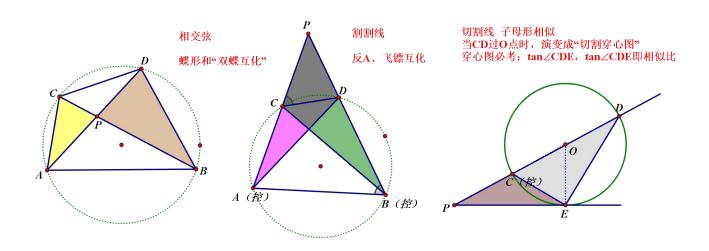
OD:DC=5:12 DC:DA=12:(13+5)=12:18=2:3



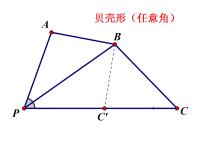
OD:DC=12:5 DC:DA=5:(12+13)=5:25=1:5

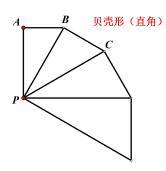


【相似模型】

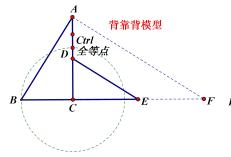

一、相似——A 形、X 形、蝶形

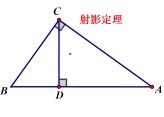
二、相似——反 A、子母、飞镖




三、圆幂定理和相似

四、贝壳形相似




基本结论:

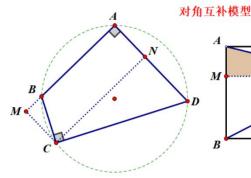
PC • PA=PB²

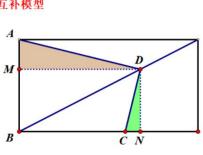
图形特征: 角平分线+同向"角序"

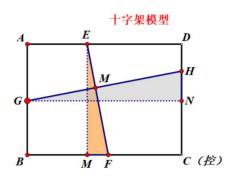
五、背靠背相似+射影定理

基本结论:

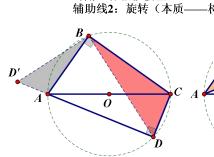
BC²=BD • BA

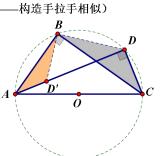

AC²=AD • AB

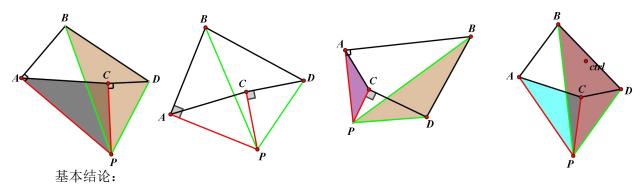

CD²=BD • AD


 $\frac{BD}{AD} = \frac{BC^2}{AC^2}$

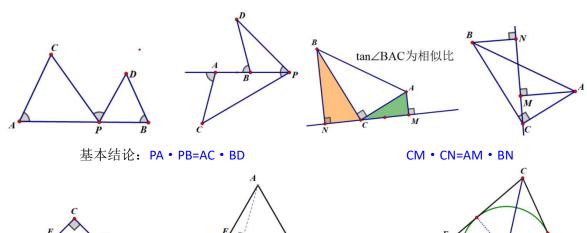
基本结论: CB · CE=CD · CA

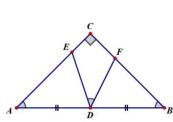

六、相似——对角互补+十字架

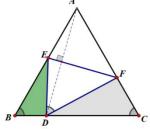


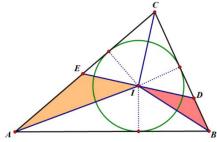


对角互补相似模型

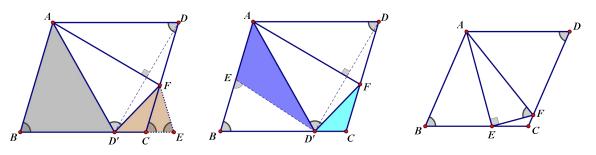

七、手拉手相似

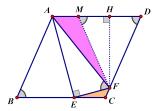



老相似: △PAB∽△PCD


新相似: △PAC∽△PBD 证明方法: SAS

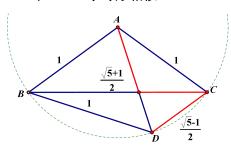
八、相似—— 一线三等角+一线三垂直





九、一线三等角——平行四边形割补法

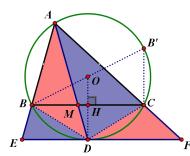
如图3,在菱形ABCD中,点E,F分别在BC,DC边上,∠AFE=∠D,AELFE,EC=3CF.请直接写出cos∠AFE的值.(cos∠AFE=0.4)



武汉 TOP 学案网 原创文档,版权所有!

网址: www.whedu.top 电话: 132 9410 5612

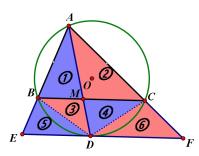
十、36°和108°子母形相似



基本结论:

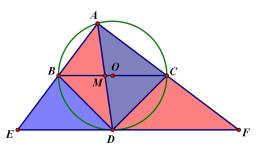
腰长为 1 的等腰三角形, 当顶角分别为 36°、60°、90°、108°、120°时 对应的底边长分别为

$$\frac{\sqrt{5}-1}{2}$$
, 1, $\sqrt{2}$, $\frac{\sqrt{5}+1}{2}$, $\sqrt{3}$


十一、双A子母图【双A、双子母、双贝壳、双蝶】/【关联: 等腰图、等角互补模型】

双A模型结论 BM:MC=ED:DF BM:ED=MC:DF=AM:AD

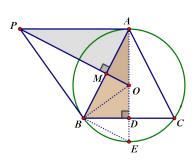
等腰图结论 BD=CD(等腰图,双勾股、垂径、中位线) 四边形ABDC对角互补模型(任意角)


△FCD-△FDA-△DBA-△DMB-△CMA (子母+蝶形+A+贝壳,特别注意△FCD-△DBA) △DCM-△DAC-△BAM-△EAD-△EDB (子母+蝶形+A+贝壳,特别注意△DAC-△EDB)

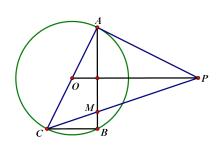
最终结论:

图中除了③+④组合 的形状无相似形外

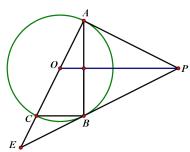
ΔABC-ΔAEF 剩下的三角形分为2组, 组内"两两相似"



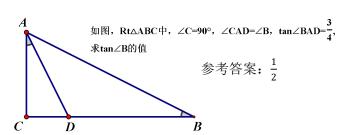
双A模型结论 BM:MC=ED:DF BM:ED=MC:DF=AM:AD

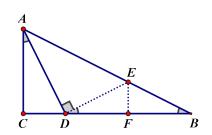

等腰图结论 BD=CD 四边形ABDC对角互补模型(<mark>双直角</mark>)

ΔFCD-ΔFDA-ΔDBA-ΔDMB-ΔCMA (子母+蝶形+A+贝壳,特别注意ΔFCD-ΔDBA) ΔDCM-ΔDAC-ΔBAM-ΔEAD-ΔEDB (子母+蝶形+A+贝壳,特别注意ΔDAC-ΔEDB)


十二、组合模型举例

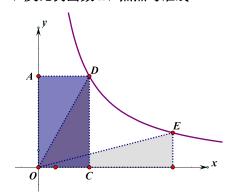
射影+反A(切线长、等腰图组合)

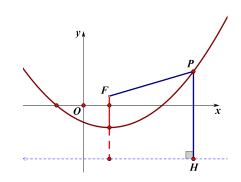



射影(1:2)+X 形+A 形 求 CM:PM

射影+A 形+子母(切割穿心图) AC=AP,求 tanE

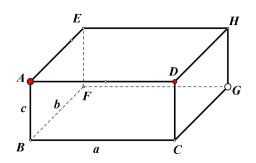
Rt 子母图





【其他模型】

一、反比例函数 K、焦点与准线



二、解直角三角形的类型和解法

己知和解法三角形类型	已知条件		41条件	解法步骤	
	两边	两直角边(如 a, b)		由 $tanA = \frac{a}{b}$,求 $\angle A$ $\angle B = 90^{\circ} - \angle A; \ c = \sqrt{a^2 + b^2}$	
P.	斜边、一直角边(如 c, a) 		直角边(如 c,a)	由 $\sin A = \frac{a}{c}$, 求 $\angle A$ $\angle B = 90^{\circ} - \angle A$; $b = \sqrt{c^2 - a^2}$	
$ \begin{array}{c c} R t \triangle A B C & B \\ \hline c & a \\ \hline d & C \end{array} $		→	→ ,,,,,,	锐角,邻边(如∠A,b)	$\angle B = 90^{\circ} - \angle A$; $a = b \cdot tanA$ $c = \frac{b}{cosA}$
			锐角,对边(如∠A,a)	$\angle B = 90^{\circ} - \angle A$; $b = \frac{a}{\tan A}$; $c = \frac{a}{\sin A}$	
	斜边,钨		(如 c, ∠A)	$\angle B = 90^{\circ} - \angle A$; $a = c \cdot \sin A$; $b = c \cdot \cos A$	

三、蚂蚁爬行

从A到G

路径有三种类型

 $\begin{array}{c} \sqrt{a^2 + \ (b+c)^{-2}} \\ \sqrt{b^2 + \ (a+c)^{-2}} \\ \sqrt{c^2 + \ (a+b)^{-2}} \end{array} \quad \begin{array}{c} a^2 + b^2 + c^2 + 2bc \\ a^2 + b^2 + c^2 + 2ac \\ a^2 + b^2 + c^2 + 2ab \end{array}$

最短路径, 取两边相乘的积最小的方案