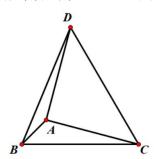
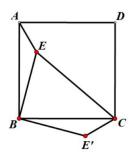


17.1-17.2 勾股定理 拓展训练

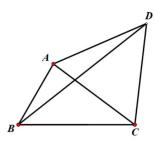
1、如图, $\triangle ABC$ 中, $\angle ABC=45^\circ$, $AB=\frac{5\sqrt{2}}{2}$,BC=12 ,以 AC 为直角边,A 为直角顶点作等腰直角 $\triangle ACD$,则 BD 的长为______.



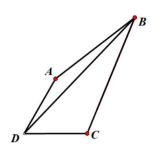
2、如图,点 E 是正方形 ABCD 内一点,连接 AE、BE、CE,将△ABE 绕点 B 顺时针旋转 90°到 △CBE'的位置,若 AE=1,BE=2,CE=3,求∠BE'C 的大小。



3、如图,在△ABC中,AB=3,BC=5,∠ABC=60°,以AC为边向外作等边△ACD,求BD的长.

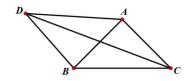


4、如图,在四边形 ABCD 中,AD=DC,∠ADC=60°,∠ABC=30°,AB=4,BC=5,求对角线 BD 的长.

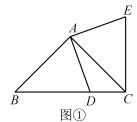


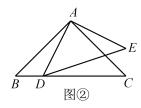
5、如图,等腰 Rt△ABC 中,AB=AC, ∠BAC=90°, 点 D 在△ABC 外,

且∠ADB=45°, BD=3, AD=4, 求线段 DC 的长.

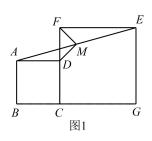


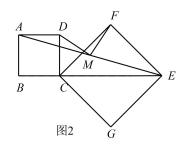
- 6、(1)问题: 如图①,在 $Rt\Delta ABC$ 中,AB=AC , D 为 BC 边上一点(不与点 B , C 重合),将线段 AD 绕点 A 逆时针旋转 90° 得到 AE ,连接 EC ,则线段 BC ,DC ,EC 之间满足的等量关系式为______;
- (2) 探索: 如图②, 在 Rt $\triangle ABC$ 与 Rt $\triangle ADE$ 中, AB = AC , AD = AE , 将 $\triangle ADE$ 绕点 A 旋转,使点 D 落在 BC 边上,试探索线段 AD , BD , CD 之间满足的等量关系,并证明你的结论;





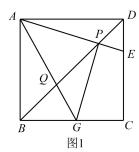
- 7、已知正方形 ABCD 和正方形 CGEF ,且 D 点在 CF 边上,连接 AE , M 为 AE 的中点,连接 MD , MF .
 - (1) 如图 1, 请直接写出线段 MD, MF 的数量及位置关系_____;
- (2) 如图 2, 把正方形 CGEF 绕点 C 顺时针旋转 45° ,使得 B ,C ,E 三点在同一条直线上,则 (1) 中的结论是否成立?若成立,请证明,若不成立,请给出你的结论并证明;

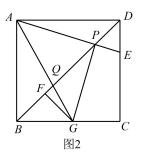




8、如图, E 是正方形 ABCD 中 CD 边上的一点, AE 交对角线 BD 于点 P, 过点 P 作 AE 的垂线交 BC 于点 G, 连接 AG 交对角线 BD 于点 Q.

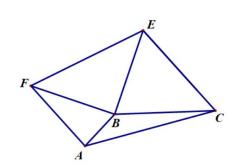
- (1) 求证: AP = PG;
- (2) 求证: $GC = \sqrt{2} \cdot PD$
- (3) 线段 BQ, PQ, PD 有何数量关系?证明你的结论;
- (4) 如图 2, 若 AB = 4 , 过点 G 作 $GF \perp BD$ 于 F , 直接写出 GF + PD = ______.
- (5) $\frac{AB+BG}{BP}$ 是否为定值,若是,请求值并证明,若不是,请说明理由。





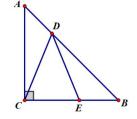
9、如图,在△ABC中,AC=10,∠ABC=135°,△EFB为等腰直角三角形,BE⊥BF,

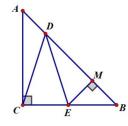
 \angle CEB+ \angle AFB=90° ,AF=6,则 $S_{\triangle BCE}+S_{\triangle ABF}-S_{\triangle ABC}=$ ______.



10、如图, △ABC 为等腰直角三角形, AC=BC, 点 D 在 AB 上, 点 E 在 BC 上, CD=DE

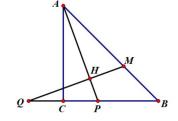
- (1) 若 \angle CDE=45 $^{\circ}$,求 $\frac{BE}{BC}$ 的值
- (2) 过E作EM \perp AB交AB于M点,求 $\frac{DM}{BC}$ 的值



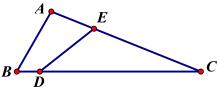


11、在等腰直角 \triangle ABC中, \angle ACB=90°, P 是线段 BC 上一动点(与点 B、C 不重合),连接 AP,延长 BC 至点 Q,使得 CQ=CP,过点 Q 作 QH \bot AP 于点 H,交 AB 于点 M

- (1) 若 \angle PAC= α , 求 \angle AMQ的大小(用含 α 的式子表示)
- (2) 用等式表示线段 MB与 PQ之间的数量关系,并证明



12、如图, 点 D, E 分别在△ABC 的边 BC 和 AC 上, ∠AED=∠B=60°, 若 AB=DE=3, AE=2, 则线 段 CD 的长为 _____.



13、如图,在 \triangle ABC中, \angle ABC=90°, \angle A=60°,AB=2,D、E 分别是 AC、AB 上的动点,且 AD=BE,点 F 是 BC 的中点,则 BD+EF 的最小值为______.

图(1)

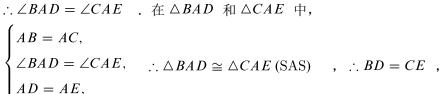
勾股定理拓展训练题 答案

- 2. 135° 1. 13
- 3.7
- $4.\sqrt{41}$
- 5. $\sqrt{41}$

- 6. (1) DC + EC = BC
 - (2) 线段 AD, BD, CD 之间满足的等量关系是 $BD^2 + CD^2 = 2AD^2$.

证明:如图①,连接 EC, $\therefore \angle BAC = \angle BAD + \angle DAC = 90^{\circ}$, AB = AC ,

- $\therefore \angle ABC = \angle ACB = 45^{\circ}$, $\therefore \angle DAE = \angle CAE + \angle DAC = 90^{\circ}$

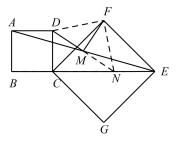


- $\angle ACE = \angle ABC = 45^{\circ}$, $\therefore \angle BCE = \angle ACB + \angle ACE = 90^{\circ}$, $\therefore BD \perp CE$,
- $\therefore \angle EAD = 90^{\circ}$, AE = AD, $\therefore ED = \sqrt{2}AD$, $\rightleftarrows Rt\triangle ECD \Rightarrow$, $ED^2 = CE^2 + CD^2$,
- $\therefore BD^2 + CD^2 = 2AD^2$
- 7. (1) MD = MF , $MD \perp MF$.
 - (2) MD = MF , $MD \perp MF$ 仍成立.

证明:如图,延长 DM 交 CE 于点 N,连接 FN, DF,

- : CE 是正方形 CFEG 的对角线, $:: \angle FCN = \angle CEF = 45^{\circ}$,
- $\therefore \angle DCE = 90^{\circ}$, $\therefore \angle DCF = 45^{\circ}$, $\therefore AD \parallel BC$,
- ∴ $\angle DAM = \angle NEM$, $\triangle ADM$ $\triangle ENM$ \bigcirc \bigcirc

$$\begin{cases} \angle DAM = \angle NEM, \\ AM = EM, & \therefore \triangle ADM \cong \triangle ENM , \therefore EN = AD, \\ \angle AMD = \angle EMN, \end{cases}$$



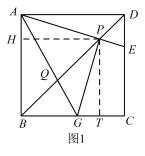
- DM = MN,
- $\therefore AD = CD$, $\therefore CD = EN$, $\triangle CDF$ 和 $\triangle ENF$ 中,

$$\begin{cases} CD = EN, \\ \angle DCF = \angle CEF, & \therefore \triangle CDF \cong \triangle ENF, & \therefore DF = NF, \angle CFD = \angle EFN, \\ CF = EF. \end{cases}$$

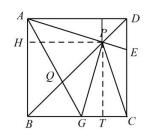
- $\therefore \angle EFN + \angle CFN = 90^{\circ}$, $\therefore \angle CFD + \angle CFN = 90^{\circ}$, $\therefore \angle DFN = 90^{\circ}$,
- $\therefore \triangle DFN$ 为等腰直角三角形, $\because DM = MN$, $\therefore FM = DM$, $FM \perp DM$.

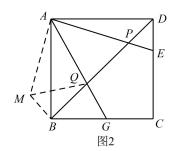
- 8. (1) 【对角互补模型】 如图 1, 作 $PH \perp AB$ 于 H, $PT \perp BC$ 于 T,
- $\therefore \angle PHA = \angle PTG = 90^{\circ}$, $\therefore BD \neq \angle ABC$ 的平分线,
- \therefore PH = PT , \because $AE \perp PG$, \therefore $\angle APH + \angle HPG = 90^{\circ}$,
- $\therefore \angle TPG + \angle HPG = 90^{\circ}$, $\therefore \angle APH = \angle GPT$.

在 $\triangle APH$ 和 $\triangle GPT$ 中, $\begin{cases} \angle APH = \angle GPT, \\ PH = PT, \\ \angle PHA = \angle PTG, \end{cases}$ $\therefore \triangle APH \cong \triangle GPT$,



- $\therefore PA = PG$.
- (2) 连接 PC, 证明 PC=PA=PG 即可。或等腰直角△PAG 的外三垂。



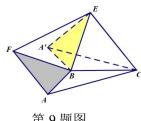


- (3) $PQ^2 = PD^2 + BQ^2$. 证明如下: 作 $BM \perp BD$, BM = PD , 连接 AM , MQ , 易证 $\triangle ADP \cong \triangle ABM$, \therefore AM = AP , $\angle BAM = \angle DAP$, \because $\angle PAQ = 45^{\circ}$,
- ∴ $\angle DAP + \angle BAQ = \angle BAM + \angle BAQ = 45^{\circ}$, $\Box \angle MAQ = 45^{\circ}$,

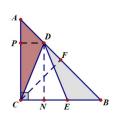
易证 $\triangle MAQ \cong \triangle PAQ$, $\therefore MQ = PQ$, $\therefore MQ^2 = BM^2 + BQ^2$,

- $\therefore PQ^2 = PD^2 + BQ^2 \quad .$
- $(4) 2\sqrt{2}$ (5) $\sqrt{2}$

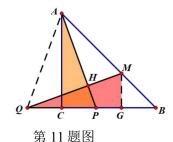
9、S=24,解析如下图



第9题图



第10题图



- 10、 (1) $\sqrt{2}$ -1; (2) $\frac{\sqrt{2}}{2}$ 解析如

- 11, (1) $45^{\circ} + \alpha$; (2) $PQ = \sqrt{2} MB$
- 12, 7
- 13、 $\sqrt{13}$ (解析如图)

