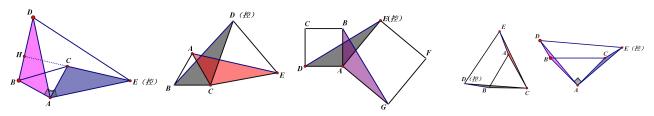


手拉手起源于"A"字,本质:旋转全等

手拉手模型及应用

【知识导航】

手拉手模型的特点:两个<u>顶角度数相等</u>的等腰三角形共用一个顶角顶点,并连结对应的底角顶点。



基本结论:角生角,60°→60°;90°→90° 角平分,第三边所在直线的夹角或其邻补角,被 它们交点和公共顶点的连线平分。

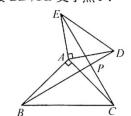
基本方法: 手拉手, 导角找"8"字

模型	已知	如图	结论
三角形手拉手	等边三角形 <i>ABC</i> 与等边三角 形 <i>CDE</i> ,点 <i>B</i> 、 <i>C</i> 、 <i>E</i> 三点共 线,连接 <i>AE</i> , <i>BD</i> 相交于点 <i>P</i> , <i>AE</i> 与 <i>CD</i> 相交于点 <i>M</i> , <i>BD</i> 与 <i>AC</i> 相交于点 <i>N</i>	B D D D E	①△BCD≌△ACE ②BD=AE ③ ∠APB = 60° ④CP 平分∠BPE ⑤ △ CMN 为等边三角 形 ⑥PB=PA+PC ⑦PE=PD+PC
	等腰三角形 ABC 与等腰三角 形 ADE,且 ∠BAC = ∠DAE, 连接 BD,CE	B C	①△ABD≌△ACE ②BD=CE ③BD与CE的夹角等于 ∠BAC 或和∠BAC 互 补
	$\triangle ABC$ 中,以 AB 为边作等边 三角形 ADB ,以 AC 为边作等 边三角形 ACE ,连接 $DC \setminus BE$, 相交于点 O	D A C	① $\triangle ADC \cong \triangle ABE$ ② $DC = BE$ ③ $\angle DOB = 60^{\circ}$
正方形手拉手	$\triangle ABC$ 中,以 AB 为边作正方形 $ABED$,以 AC 为边作正方形 $ACGF$,连接 DC 、 BF ,相交于点 O	E D A G G	① △ ADC≌ △ ABF ② CD=BF ③ ∠DOB = 90°

【典例讲练】

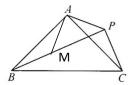
【例 1】如图, $\triangle ABC$ 和 $\triangle ADE$ 均为等腰直角三角形, $\angle BAC = \angle DAE = 90^{\circ}$,连接 BD,CE 交于点 P.

- (1)求证:△ABD≌△ACE;
- (2)判断 BD,CE 的关系并证明;
- (3)连接 PA,求 ZAPB 的度数.
- (1) $\triangle ABC$ 和 $\triangle ADE$ 均为等腰直角三角形, $\angle BAC = \angle DAE = 90^{\circ}$, $\therefore AB = AC$, AD = AE, $\angle BAD = \angle CAE$, $\therefore \triangle ABD \cong \triangle ACE$ (SAS);
- (2) $BD = CE \perp BD \perp CE$. 证明: $\triangle ABD \cong \triangle ACE$, $\triangle BD = CE$, $\angle ABD = \angle ACE$, $\triangle \angle BPC = \angle BAC = 90^{\circ}$, $\triangle BD \perp CE$.
- (3)过点 A 分别作 BD , CE 的垂线, 垂足分别为 M , N , 由面积法(或全等)可得点 A 到 BD , CE 的距离相等, $\therefore AP$ 平分 $\angle BPE$, \mathbb{Z} $\angle BPE = 90^{\circ}$, $\therefore \angle APB = 45^{\circ}$.



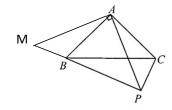
【例 2】如图,等腰 Rt $\triangle ABC$ 中, $\angle BAC$ =90°,P为 $\triangle ABC$ 外一点, $\angle APB$ =45°,连接 PC. 求 $\angle APC$ 的度数.

证明△ABM 和△ACP 全等,8字导角,可证∠BPC=90°,答案 135°

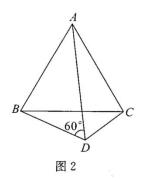


1. 在例 2 的条件下,将点 P 移至 BC 的下方, $\angle APB=45$ °不变, 求 $\angle APC$ 的度数.

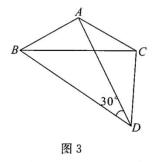
证明 \triangle ABM 和 \triangle ACP 全等,答案 45°



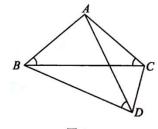
(2)如图 2, $\triangle ABC$ 中,AB=AC, $\angle ADB=\angle BAC=60^{\circ}$,求 $\angle ADC$ 的度数;



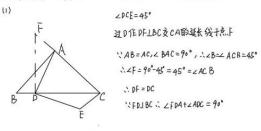
(3)如图 3, △ABC 中, AB=AC, ∠BAC=120°, ∠ADB=30°, 求∠ADC 的度数;



(4)如图 4,在 $\triangle ABC$ 中,AB=AC, $\angle ADB=\angle ABC=\angle ACB$,求证:AD 平分 $\angle BDC$.



- 1. 如图, $\triangle ABC$ 中, AB=AC, D 为 BC 上一点, AD=DE, $\angle ADE=\angle BAC=\alpha$.
 - (1)如图 1,若 $\alpha = 90^{\circ}$,求 $\angle DCE$ 的度数;



Z: ∠ADE=9°, ∴ ∠ADC +∠CDE=9°°

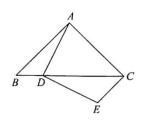
Æ △ADF5△E DC¢

S DF = DC

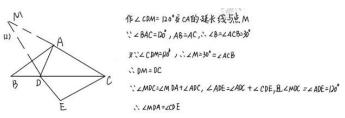
∠FDA = ∠CDE

AD = ED

∴ △ADF \(\triangle \) \(\tria



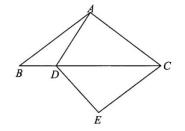
(2)如图 2,若 $\alpha = 120^{\circ}$,求 $\angle DCE$ 的度数;



Δ MPA 5Δ CDE Φ S MD = CD Δ MDA = Δ CDE Δ MPA Δ CDE (SAS) Δ CDE = Δ M = Δ 0°

(3)如图 3,点 E 在直线 BC 的下方, $\angle DCE$ 与 $\angle ACB$ 是否存在某种确定的数量关系? 试说明理由.

【解析】在 CA 的延长线上取 F,使 DF=DC,构造双等腰△ADE 和△FDC 手拉手,即△FDA≌△CDE(SAS),故∠DCE=∠F=∠ACB



2. 如图,在平面直角坐标系中,点 A(-2,0), $B(0,-2\sqrt{3})$, $\angle ABO=30^\circ$, R(-6,0),点 P 为线段 BR 上一动点,以 AP 为边作等腰 $\triangle APQ$, PA=PQ,且 $\angle APQ=\angle RAB$,连接 AQ, 当点 P 运动时, $\triangle ABQ$ 的面积是否变化? 若不变,求其值;若变化,求其变化范围.

